Using Integrated Grand Rounds to Bridge Basic and Clinical Sciences Across a Medical Curriculum (#2068042)

Michelle M. Duffourc1, Robert V. Schoborg, K. Ramsey McGowen2, Theresa F. Lura3, Cynthia Lybrand, and Reid Blackwelder4
Depts. of Biomedical Sciences1, Psychiatry2, and Family Medicine3; Academic Affairs4, Quinn Com, East Tennessee State University, Johnson City, TN 37614

Problem Statement

Medical education faces significant challenges arising from massive increases in medical knowledge and technology. Thus, how to appropriately integrate this body of knowledge with health care delivery remains a major focus of curriculum reform efforts. In order to best prepare our students for their roles as future physicians, medical schools will have to develop new curricula and tests of assessment. Novel teaching modalities which give preclinical students the opportunity to actively practice using basic science information to inform clinical problems and to provide them with additional patient contact are needed. Further, studies have shown that students’ retention of basic science information after their preclinical years tends to be poor1. These factors mandate that new strategies be considered in the typical 95% greater than

In addition, nearly all (>95%) medical students feel that IGR is a valuable opportunity to practice clinical teaching skills in the clinical part of the curriculum.

IGR Increases Medical Students’ Basic Science Knowledge

IGR is an effective way to introduce clinical application into the basic science part of the curriculum.

Students Perceive IGR as an Effective Educational Modality

IGR is an effective way to integrate information across the basic science disciplines.

Student Comments to Question - What did you feel was the most beneficial?

-有利于整合课程，促进基础科学与临床科学之间的有效整合
-更有效地准备学生的角色，成为居民
-对临床医学教学技能的练习是学生非常重要的事情，我相信我的学生非常重视这些技能。

In northwest Georgia IGR is a valuable opportunity to practice clinical teaching skills in the clinical part of the curriculum.